Theorem: ln(2) = 0

Theorem: ln(2) = 0
Proof:
Consider the series equivalent of ln 2:
ln 2 = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 ...
Rearange the terms:
ln 2 = (1 + 1/3 + 1/5 + 1/7 ...) - (1/2 + 1/4 + 1/6 + 1/8 ...)
Thus:
ln 2 = (1 + 1/3 + 1/5 + 1/7 ...) + (1/2 + 1/4 + 1/6 + 1/8 ...) -
2 * (1/2 + 1/4 + 1/6 + 1/8 ...)
Combine the first to series:
ln 2 = (1 + 1/2 + 1/3 + 1/4 + 1/5 ...) - (1 + 1/2 + 1/3 + 1/4 + 1/5 ...)
Therefore:
ln 2 = 0

Rating: 3/10